

Programmable Motion Generation for Open-Set Motion Control Tasks

In CVPR 2024 Highlight

Hanchao Liu, Xiaohang Zhan, Shaoli Huang, Tai-Jiang Mu, Ying Shan BNRist Tsinghua University Tencent Al Lab

Contents

01 Introduction

- Motivation
- Problem definition

02 Method

- Overview
- Atomic constraints
- Motion generation network
- Motion Programming
- Latent Noise Optimization

03 Evaluation

- Evaluation Metrics and Tasks
- Evaluation

04 Reference

Introduction – Motivation

Human Motion = Subjective Behaviors + External Constraints

trajectory

velocity

keyframe

尔

interaction

manipulation

contact

physics

combinations

Human Motion = Subjective Behaviors + External Constraints

4

Definition of Problem

Close-set Motion Control Problem

Open-set Motion Control Problem

?????

Close-set Motion Control Problem

pre-define single or a finite set of constraints and formulate it as individual tasks

- <Close-set Motion Control Tasks List>
- Trajectories/velocity control
- Motion in-betweening
- Human-scene/object interactions
- physics-based animation
- etc

- <Limitation: Previous ai-based animation method>
- 1. For each task, the dataset and the methodology are specifically designed and individually trained.
- 2. Those methods intrinsically cannot deal with customized constraints or arbitrary combinations of them.
- 3. seldom extendable or customizable.

Open-set Motion Control Problem

set of motion control tasks is open and fully customizable

<Open-set Motion Control Tasks List>

- Everything you want

Velocity constraint

"walk" + velocity specified at first, middle and last frames

 $\begin{array}{l} t \vartheta = \vartheta_1 \ t 1 = n_1 - frames - 1 \\ v \vartheta = (\vartheta, \vartheta, \vartheta, \vartheta \otimes 1); \ v t = (\vartheta, \vartheta, \vartheta, \vartheta); \ v = (\vartheta, \vartheta, \vartheta, \vartheta); \ v = (\vartheta, \vartheta, \vartheta, \vartheta); \ v = (\vartheta, \vartheta);$

Physics constraint "balance on a leg with arms stretched" + center of gravity on right foot

7

Close-set Motion Control Problem

pre-define single or a finite set of constraints and formulate it as individual tasks

Trajectories/velocity control

<Interactive motion generation from examples, ACM Transactions on Graphics (TOG), 2002>

Close-set Motion Control Problem

pre-define single or a finite set of constraints and formulate it as individual tasks

Motion in-betweening

<Robust motion in-betweening. ACM Transactions on Graphics (TOG), 2020>

Close-set Motion Control Problem

pre-define single or a finite set of constraints and formulate it as individual tasks

Physics-based animation

<Deeploco, ACM Transactions on Graphics (TOG), 2017>

<Deepmimic, ACM Transactions On Graphics (TOG), 2018>

Open-set Motion Control Problem

It is the Set of motion control tasks that is open and fully customizable

Task: walking + upper left

Task: walking on an inclined plane

Overview of Programmable Motion Generation

Total Error Function for evaluating the generated motion

Motion Programming(Total Error Function of the Constraints)

Motion Programming:

Method - Atomic Constraint library

Atomic Constraint library(+ Logical Operations)

Set of the Basic Constraints for generating various Human motions

- <Atomic Constraint library>
 - Absolute Position Constraint
 - High-order Dynamic Constraint
 - Geometric Constraint
 - Relative Distance Constraint
 - Directional Constraint
 - key-frame Constraint

- <Logical operations>
- ">" - "<" - "AND" - "OR"
- "NOT"
- etc

Method - Atomic Constraint library

Atomic Constraint library(+ Logical Operations)

Set of the Basic Constraints for generating various Human motions

<Atomic Constraint library>

- **Absolute Position Constraint** requires the trajectory x_j^{pos} to be close to a given trajectory \hat{x}_j^{pos} e.g.(L-n norms)

- **High-order Dynamic Constraint** constrains motion dynamics of joints(not position) e.g.(velocity, acceleration of certain joints)

- **Geometric Constraint** constrain a joint on a geometric primitive P in the global coordinate system e.g.(curve, surface)

- Relative Distance Constraint models relationships between two joints

- **Directional Constraint** requires a bone consisting of x_j and its parent joint parent (x_j) to point at a given direction

- Key-frame Constraint enforces constraint at certain timesteps

Method – Motion Programming Framework

Motion Programming Framework

The "motions" is a list of dictionaries containing information of joints : {"joint_name" : (x, y, z)}
The "parameters" includes task-related constants

Method – Motion Programming Framework

```
Task : pick object / constraint : first Frame(object position : point A), last frame(object position : point B)
```

```
def compute_error(motion, point_A, point_B):
           total_error = 0
 7
 8
           # Constants and thresholds
           max allowable distance A = 0.1 # Maximum allowable distance between left hand and point A in the first frame
 9
           max allowable distance B = 0.1 # Maximum allowable distance between left hand and point B in the last frame
10
11
          # Iterate through frames
12
           for frame_index, joints in enumerate(motion):
13
               # Get the left hand coordinates for the current frame
14
               left_hand = joints.get("left_hand", None)
15
16
               if left hand is not None:
17
                   # Geometric constraint: Distance from left hand to point A in the first frame
18
19
                   if frame_index == 0:
                       distance_left_hand_to_A = DistToPoint(left_hand, point_A)
20
                       total_error += max(distance_left_hand_to_A - max_allowable_distance_A, 0)
21
22
                   # Geometric constraint: Distance from left hand to point B in the last frame
23
                   elif frame_index == len(motion) - 1:
24
                       distance left hand to B = DistToPoint(left hand, point B)
25
                       total_error += max(distance_left_hand_to_B - max_allowable_distance_B, 0)
                                                                                                                     (2)
26
27
                   # You may add more constraints based on specific requirements for intermediate frames
28
```

29

30

Method – Motion Programming Framework

Example usage

```
# Example usage:
32
33 ∨ motion_data = [
34
          {"left_hand": (x1, y1, z1), ...}, # Frame 0
35
          {"left_hand": (x2, y2, z2), ...}, # Frame 1
          # ... (more frames)
36
37
          {"left_hand": (xn, yn, zn), ...}, # Last frame (Frame n)
      ]
38
39
40
       point_A = (xA, yA, zA)
41
       point_B = (xB, yB, zB)
42
       total_error = compute_error(motion_data, point_A, point_B)
43
       print("Total Error:", total_error)
44
```


Method – Latent Noise Optimization

Diffusion model

Forward Diffusion Process

Reverse Denoising Process

Noise following a specific distribution is added for each timestep.

Goal : Creating a image with a probability distribution similar to the input image.

Method – Latent Noise Optimization

<Motion Diffusion Model(MDM)>

<Denosing Diffusion Implicit Model(DDIM)> Z : latent noise that is single vector

optimization problem : $\min_{z} F(G_{\theta}(z,C),p)$

Mathis Petrovich, Michael J Black, and Gul Varol. Temos: "Generating diverse human motions from textual descriptions. In European Conference on Computer Vision, pages 480–497. Springer, 2022

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In International Conference on Learning Representations, 2020

Method – Latent Noise Optimization

Experiments and Evaluation

Evaluation Metrics and Tasks

<Evaluation Metrics>

- Foot Skate
- Maximum Joint Acceleration(Max Acc)
- -> To evaluate frame-wise consistency

-Constraint Error(C.Err)

-> MAE(Mean Absolute Error)

-Unsccess Rate(Unsucc. Rate)

-> The percentage of generated samples that fail to meaet all the constraints within 5cm threshold

-Frechet Inception Distance(FID)

-> To evaluate the quality of motion generation by measuring how similar the generated motion is to real motion data

-Diversity

- R-Precision(R-prec)

-> To evaluate how well the generated motion matches the conditions such as textual descriptions

<Evaluation Tasks>

- HSI-1 : head height constraint
- HIS-2 : avoiding barrier
- HIS-3 : walking inside a square
- GEO-1 : hand touching wall
- HOI-1 : moving object

Experiments and Evaluation

Evaluation

Task HSI-1: head height constraint												
Method	Foot Skate \downarrow	Max Acc. \downarrow	C.Err. \downarrow	Unsucc. Rat	$e \downarrow FID \downarrow$	$\text{Diversity} \rightarrow$	R-prec. (Top3) [↑]					
MDM (Unconstrained) [38]	0.086	0.097	0.118	0.718	0.545	9.656	0.610					
MDM Edit [38]	0.094	0.148	0.109	0.645	0.554	9.656	0.614					
IK	0.093	0.414	0.012	0.088	0.545	9.653	0.610					
IK+Reg.	0.269	0.121	0.012	0.088	0.782	9.509	0.603					
Ours	0.075	0.094	0.012	0.088	0.556	9.611	0.597					
	1	Task HSI-2: avoiding barrier				Task HSI-3: walking inside a square						
Method	Foot Ska	te↓ Max	Acc.↓	C.Err. \downarrow	Foot Skate \downarrow	Max Acc	$.\downarrow$ C.Err. \downarrow					
MDM (Unconstrained) [38]	0.096	0.	126	0.454	0.096	0.126	0.301					
IK	0.132	1.9	919	0.047	0.139	0.292	0.015					
IK+Reg.	0.589	0.3	361	0.047	0.215	0.128	0.015					
Ours	0.189	0.	150	0.097	0.125	0.093	0.012					

HIS-{number} : Human-Scene Interaction

HIS-1 : constraining the head heights on the first, central and last frames. This task uses "geometric constraint" and "key-frame constraint".

Evaluation

	Task GEO	D-1: hand touching	g wall	Task HOI-1: moving object			
Method	Foot Skate↓	Max Acc. \downarrow	C.Err. \downarrow	Foot Skate ↓	Max Acc. \downarrow	C.Err. \downarrow	
MDM (Unconstrained) [38]	0.096	0.126	0.233	0.029	0.026	1.701	
MDM Edit [38]	0.161	0.147	0.141	0.029	0.032	1.739	
PriorMDM [35]	0.350	0.197	0.185	0.327	0.213	1.884	
IK	0.147	0.187	0.010	0.408	0.919	0.011	
IK+Reg.	0.536	0.117	0.010	0.405	0.037	0.011	
Ours	0.110	0.104	0.023	0.114	0.068	0.028	

GEO-{number} : Motion Control with Geometric Constraints HOI-{number} : Human-Object Interaction

- **GEO-1** : walking with hand touching a vertical wall
- HOI-1 : moving an object from on place to another. Both starting and end positions for the controlled hand are specified. This task uses "absolute position constraints" and "key-frame constraint".

Experiments and Evaluation

Evaluation

https://hanchaoliu.github.io/Prog-MoGen/

Okan Arikan and David A Forsyth. Interactive motion gen- eration from examples. ACM Transactions on Graphics (TOG), 21(3):483–490, 2002.

Fe'lix G Harvey, Mike Yurick, Derek Nowrouzezahrai, and Christopher Pal. Robust motion in-betweening. ACM Trans- actions on Graphics (TOG), 39(4):60–1, 2020.

Xue Bin Peng, Glen Berseth, KangKang Yin, and Michiel Van De Panne. Deeploco: Dynamic locomotion skills using hierarchical deep reinforcement learning. *ACM Transactions on Graphics (TOG)*, 36(4):1–13, 2017.

Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel Van de Panne. Deepmimic: Example-guided deep reinforce- ment learning of physics-based character skills. *ACM Trans- actions On Graphics (TOG)*, 37(4):1–14, 2018.

Chuan Guo, Shihao Zou, Xinxin Zuo, Sen Wang, Wei Ji, Xingyu Li, and Li Cheng. Generating diverse and natural 3d human motions from text. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 5152–5161, 2022.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denois- ing diffusion implicit models. In *International Conference on Learning Representations*, 2020

https://developer.nvidia.com/blog/improving-diffusion-models-as-an-alternative-to-gans-part-1/

https://github.com/j-w-yun/optimizer-visualization?tab=readme-ov-file