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01 Introduction
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Introduction – Goal

Command : the person is flailing their arms around Command : the person is jogging lightly

Scaling Language-Directed Physics-based Control with Progressive Supervised Distillation
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Introduction – Goal

Command : a man throws then catches an object Command : the man does a backwards kick

Scaling Language-Directed Physics-based Control with Progressive Supervised Distillation
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02 Background
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Background – Character animation Model 

<Physics-based animation Model> <Kinematic-based animation Model>

Advantage

Disadvantage

Advantage

Disadvantage

Method Method

• Realistic movement

• Enable realistic responses to perturbations 
and environmental variation

• Can not scale beyond at most several 
hundred motions

Reinforcement Learning Supervised Learning

• Can scale beyond at most several 
hundred motions

• Disable realistic responses to perturbations 
and environmental variation
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<Deeploco, ACM Transactions on Graphics (TOG),  2017> <Deepmimic, ACM Transactions On Graphics (TOG), 2018> 

Background – Character animation Model

Physics-based animation model

Method : Deep Reinfocement Learning 
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Background – Character animation Model

Kinematic-based animation model

<Programmable Motion Generation for Open-Set Motion Control Tasks, CVPR 2024> 

Method : Diffusion Model(Supervised Learning)
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Background – Adversarial Learning

Generative Adversarial Networks(GAN)

Z

<Latent Vector> 

Generator Fake image

Real image

Discriminator Loss

Generator : Generate Image

Discriminator : Probability (Real: 1 ~ Fake: 0)
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Background – Adversarial Learning

Generative Adversarial Networks(GAN)

<Image : 64 x 64> <Distribution : 64 x 64 x 3> 
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Background – Adversarial Learning

Distribution of Generative model Distribution of Real data Distribution of Discriminator

Training of GAN
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Background – Adversarial Learning

Generative Adversarial Networks(GAN)

<Generator> 

Z

Fake image
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Background – Knowledge Distillation

Domain A

Teacher Model

Student Model

train

train

Educate

Big & Deep

Small & Shallow

• Model Compression

• Low Computational Complexity

• Boosting Performance

Knowledge Distillation

Advantage

Which Knowledge?

• Hidden Activation(Weight)

• Class Probability
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Method: Class Probability

Background – Knowledge Distillation

𝑋𝑖

Teacher Classifier

Student Classifier

Softmax

Softmax

transfer

Class Probability

Distilling the Knowledge in a Neural Network, Hinton & Jeff Dean et al, NIPS workshop, 2024
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Method: Hidden Activation(Weight)

Background – Knowledge Distillation

𝑋𝑖

R R R

<Pre-trained teacher network(Hint)> 

<Student network(Guided)> 

Hint Hint Hint

FitNets: Hints for Thin Deep Nets, Romero & Bengio et al, ICLR, 2015
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Background - DeepMimic

SIGGRAPH 2018

DeepMimic: Example-Guided Deep Reinforcement Learning of Physics-Based Character Skills

<Character> <Reference motion> <Task: Hit target> <Simulated motion>
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Background - DeepMimic

SIGGRAPH 2018

DeepMimic: Example-Guided Deep Reinforcement Learning of Physics-Based Character Skills

<Simulated motion: Physics-based><Character> <Reference motion: walking>
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Background – PADL

PADL: Language-Directed Physics-Based Character Control, SIGGRAPH Asia 2022 Conference

Task : Slash right
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PADL: Language-Directed Physics-Based Character Control, SIGGRAPH Asia 2022 Conference

Skill Embedding -> Policy Training -> Multi-Task Aggregation

Data Set : {(𝑀𝑖, 𝐶𝑖)}

M : Motion, C : Caption

Background – PADL
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PADL: Language-Directed Physics-Based Character Control, SIGGRAPH Asia 2022 Conference

Step1: Skill Embedding(mapping)

Background – PADL
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PADL: Language-Directed Physics-Based Character Control, SIGGRAPH Asia 2022 Conference

Step2: Policy Training(Adversarial Network Architecture)

Background – PADL
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PADL: Language-Directed Physics-Based Character Control, SIGGRAPH Asia 2022 Conference

Step3: Multi-Task Aggregation

Background – PADL
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SuperPADL: Scaling Language-Directed Physics-Based Control with Progressive Supervised Distillation 

PADL SuperPADL

Background – PADL
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03 Method
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Inspired by two observations

*RL Method*(Physics-based Model)

+ able to produce motions with high quality and naturally transition between skills
- can’t scale beyond at most several hundred motions

*Supervised Method*(Kinematic Model)

+ can scale to datasets containing thousands of motions using supervised learning
- can’t produce motions with high quality and naturally transition between skills

Method - Overview

SuperPADL: Scaling Language-Directed Physics-Based Control with Progressive Supervised Distillation 
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Method - Overview

SuperPADL: Scaling Language-Directed Physics-Based Control with Progressive Supervised Distillation 

RL RL + Supervised Learning Supervised Learning
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Method – Per motion tracking

Training Per-Motion Expert Tracking Policies

Data Set : D = {(𝑀𝑖, 𝐶𝑖)}

M : Motion capture sequences, C : Caption

𝐷′𝐷
Kinematic-domain Physics-domain

DeepMimic

𝐷1

𝐷2

𝐷3

𝐷𝑖

.

. 

. 

𝑂𝑡 : Current state of character

∅ ∈[0, 1] : phase variable that synchronizes the policy to the reference motion
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Method – Per motion tracking

Training Per-Motion Expert Tracking Policies

𝐷1

𝐷2

𝐷3

𝐷𝑖

.

. 

. 

Trajectories(each expert) Trajectory Dataset
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Method – Group Controllers

Training Group Controllers with PADL + BC

PADL Method

𝑃𝑖

: each group(randomly partition the dataset into groups of 20 motions
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Method – Group Controllers

Training Group Controllers with PADL + BC

Group 1

Group 2

Group 3

Group 4

𝜋1
𝑔
(𝑎𝑡|𝑜𝑡, 𝐼)

𝜋2
𝑔
(𝑎𝑡|𝑜𝑡, 𝐼)

𝜋3
𝑔
(𝑎𝑡|𝑜𝑡, 𝐼)

𝜋4
𝑔
(𝑎𝑡|𝑜𝑡, 𝐼)

Expert

Trajectory Dataset: label

BC: Supervised Learning

Goal

• Naturally transition between these motions when the input index changes
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Method – Distillation

Distilling into a Global Text-Conditioned Policy

𝜋1
𝑔
(𝑎𝑡|𝑜𝑡, 𝐼)

𝜋2
𝑔
(𝑎𝑡|𝑜𝑡, 𝐼)

𝜋3
𝑔
(𝑎𝑡|𝑜𝑡, 𝐼)

𝜋𝑖
𝑔
(𝑎𝑡|𝑜𝑡, 𝐼)

…

𝜋𝐺(𝑎𝑡|𝑜𝑡, 𝑐)

<Teacher Polices> <Student Policy>

How?
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Method – Distillation

Distilling into a Global Text-Conditioned Policy

𝜋𝐺(𝑎𝑡|𝑜𝑡, 𝑐)

<Student Policy>

Expert

Trajectory Dataset

Supervised Learning

caption(C)

Clip

caption, motion -> Latent vector

𝑜𝑡

𝜋𝐺(𝑎𝑡|𝑜𝑡, 𝑐) 𝑎𝑡



34

Method – Distillation

Distilling into a Global Text-Conditioned Policy

𝜋𝐺(𝑎𝑡|𝑜𝑡, 𝑐)

<Student Policy>

Expert

Trajectory Dataset

Supervised Learning

caption(C)

Clip

caption, motion -> Latent vector

𝑜𝑡

𝜋𝐺(𝑎𝑡|𝑜𝑡, 𝑐) 𝑎𝑡

Supervised Learning
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Method
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04 Evaluation
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Evaluation – Quantitative

Ι : Indicator variable



38

Evaluation - Qualitative

Prompt : a person dances and moves around with their hands in the air
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Evaluation – Qualitative

Prompt : the person was doing a comedy move
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05 Reference
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