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Introduction & Background
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• The challenge of estimating 3D human pose from a single 2D image

Objective

• 3D data is accurate but expensive and hard to obtain

• 2D data is abundant but lacks of depth information, depth ambiguity issue

Limitations of Previous Methods



Method
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Consistency Loss

• Enforces consistency between 3D poses inferred from different views

• Uses Procrustes analysis to align 3D posed from Multiple views

• Without camera calibration, extrinsic/intrinsic parameters not needed

<Method Overview>
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Overview
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Similarity transformation

• It is a geometric transformation that reserves the shape of an object

Scaling, Rotation, Translation

Why is Similarity transformation

• 3D poses predicted from different camera views are in different 

coordinate systems.

• Directly comparing them is difficult because of scale, rotation, and 

position differences.

• To eliminate the need for camera calibration (extrinsic/intrinsic parameters).
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• It is a geometric transformation that reserves the shape of an object

Scaling, Rotation, Translation

Similarity transformation

• we have to calculate the optimal similarity transform with parameters
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• It it a form of statistical shape analysis used to analyze the distribution of a set of shapes.

Procrustes Analysis

Scaling

Translation

Rotation
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• The mean difference over every pair of two cameras

S : the total of sequences,

V: the set of possible pairs of views of the sequence

mean of Consistency Loss

Consistency Loss



Experimental Setup & Datasets
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• motionBERT: 2D → 3D Pose

Used Model

MotionBERT: A Unified Perspective on Learning Human Motion Representations (ICCV 2023)

https://arxiv.org/pdf/2210.06551.pdf


Experimental Setup & Datasets
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Datasets

• SportsPose: Dynamic sports movements, additional views included (fine-tuning)

• Human3.6M: Used for semi-supervised learning experiments (semi-supervised learning)

https://christianingwersen.github.io/SportsPose/
http://vision.imar.ro/human3.6m/description.php

https://christianingwersen.github.io/SportsPose/


Evaluations
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Fine-tuning: SportsPose

<Evaluation Table> <Which views to use>



Evaluations
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Semi-supervised: Human3.6M

• 3D data: supervised learning

• 2D data: Consistency Loss (No-labels)

<Evaluation Table>



Limitations & Contributions
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• Performance depends on camera placements

• Requires fixed camera positions

• Requires precise camera synchronization

Limitations

• Works without camera calibration.

• Significantly improves performance even without 3D ground truth data.

Contributions



Q&A
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