Tow Views Are Better than One: Monocular 3D Pose Estimation with Multiview Consistency

Christian Keilstrup Ingwersen¹, Rasmus Tirsgaard², Rasmus Nylander¹, Janus Nørtoft Jensen³, Anders Bjorholm Dahl², and Morten Rieger Hannemose² Trackman A/S¹ Technical University of Denmark²

Presented by

DaeYong Kim, Dept. of Artificial Intelligence, Ajou University

Objective

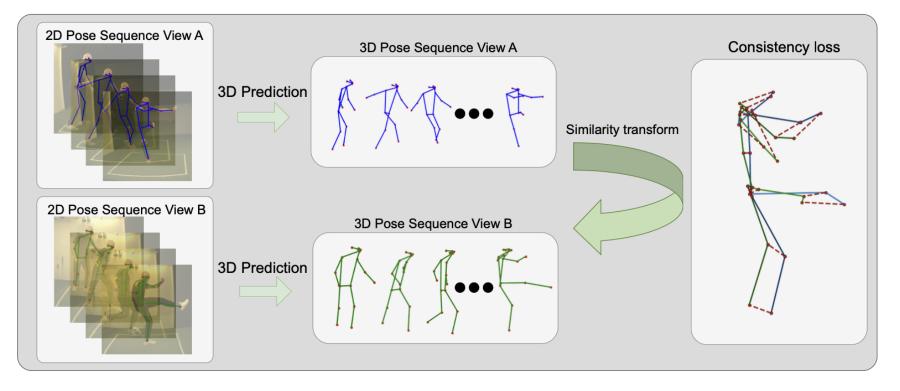
• The challenge of estimating 3D human pose from a single 2D image

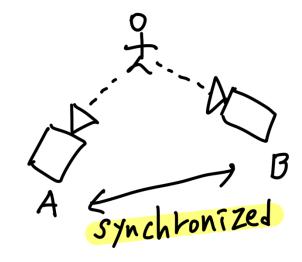
Limitations of Previous Methods

- 3D data is accurate but expensive and hard to obtain
- 2D data is abundant but lacks of depth information, depth ambiguity issue

Consistency Loss

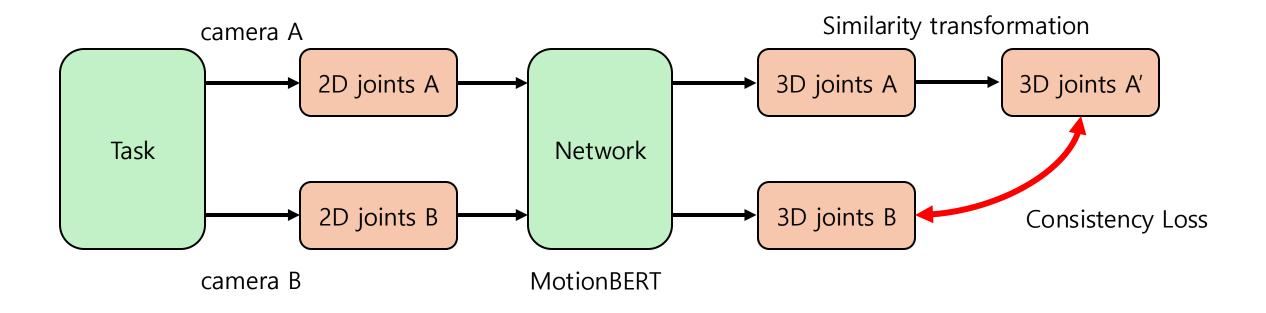
- Enforces consistency between 3D poses inferred from different views
- Uses Procrustes analysis to align 3D posed from Multiple views
- Without camera calibration, extrinsic/intrinsic parameters not needed

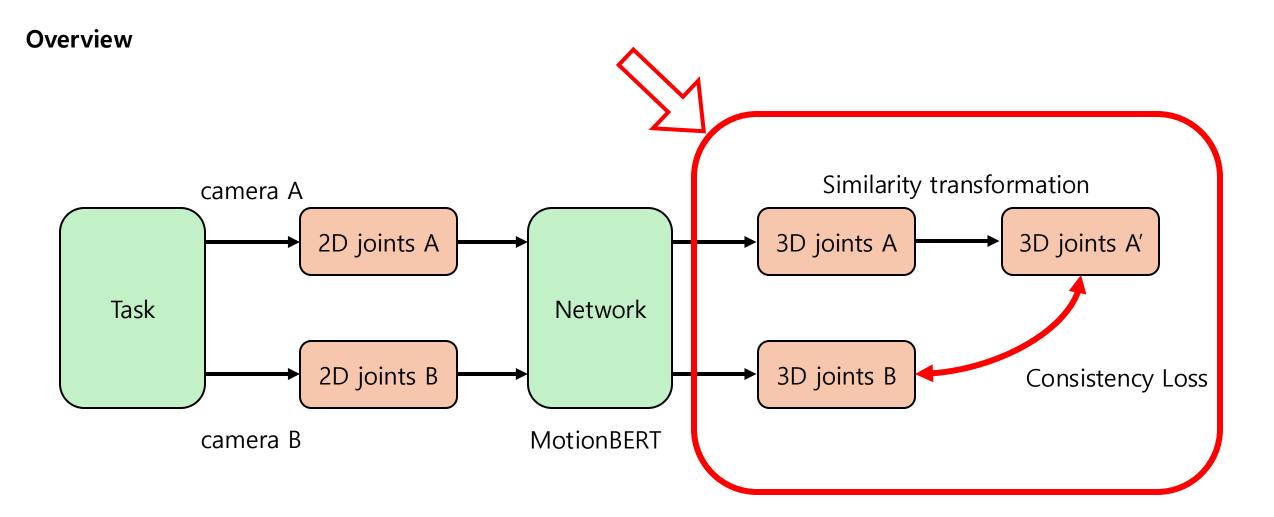




<Method Overview>

Overview





Similarity transformation

• It is a geometric transformation that reserves the shape of an object

Scaling, Rotation, Translation

X' = sRX + t

Why is Similarity transformation

- 3D poses predicted from different camera views are in different coordinate systems.
- Directly comparing them is difficult because of scale, rotation, and position differences.
- To eliminate the need for camera calibration (extrinsic/intrinsic parameters).

Similarity transformation

• It is a geometric transformation that reserves the shape of an object

Scaling, Rotation, Translation

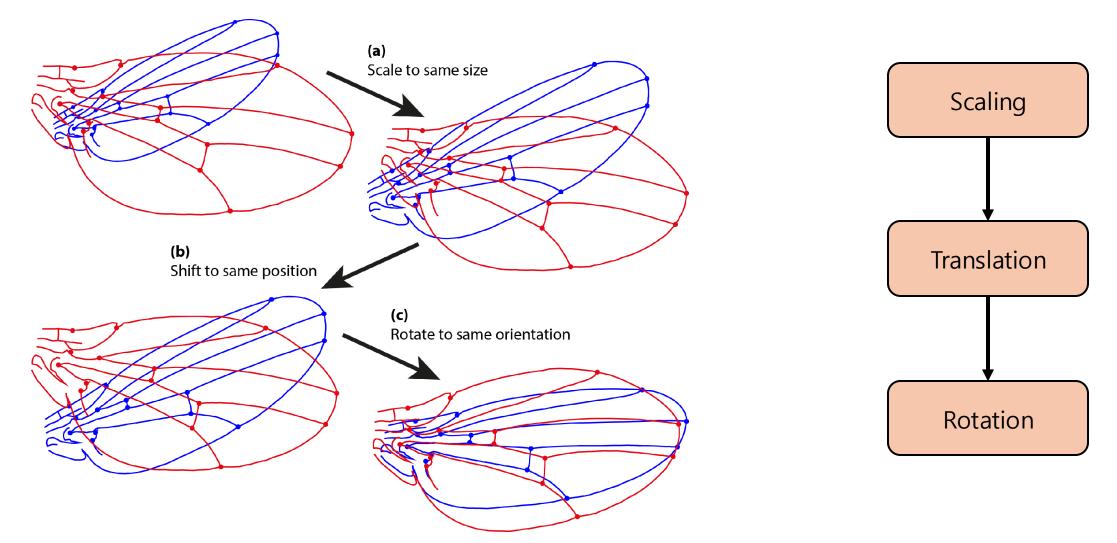
- we have to calculate the optimal similarity transform with parameters $\,\widehat{ heta}_{ab}$

$$\hat{\theta}_{ab} = \arg\min_{\theta} \sum_{i=1}^{n} \left\| \left| \tau \left(\hat{J}_{a,i}; \theta \right) - \hat{J}_{b,i} \right\|_{2}^{2} \right\|_{2}$$

$$\tau\left(\hat{J}_{a,i};\hat{\theta}_{ab}\right) = s\hat{J}_{a,i}R + t$$

Procrustes Analysis

• It it a form of statistical shape analysis used to analyze the distribution of a set of shapes.



8

mean of Consistency Loss

- The mean difference over every pair of two cameras
- S : the total of sequences,
- V: the set of possible pairs of views of the sequence

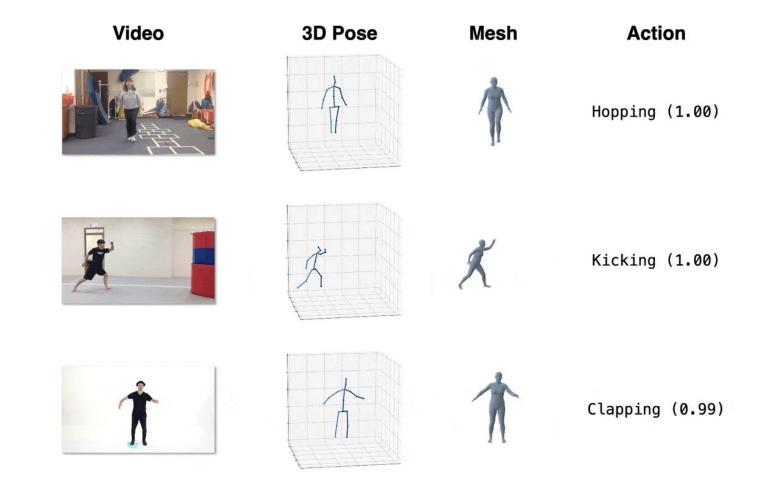
$$\mathcal{L}_{\text{con}} = \sum_{s=1}^{S} \frac{1}{|V_s|} \sum_{(a,b) \in V_s} \mathcal{L}_{\text{c}} \left(\hat{J}_a, \hat{J}_b \right)$$

Consistency Loss

$$\mathcal{L}_{c}(\hat{J}_{a},\hat{J}_{b}) = \frac{1}{n} \sum_{i=1}^{n} \left\| \tau\left(\hat{J}_{a,i};\hat{\theta}_{ab}\right) - \hat{J}_{b,i} \right\|_{2}$$

Used Model

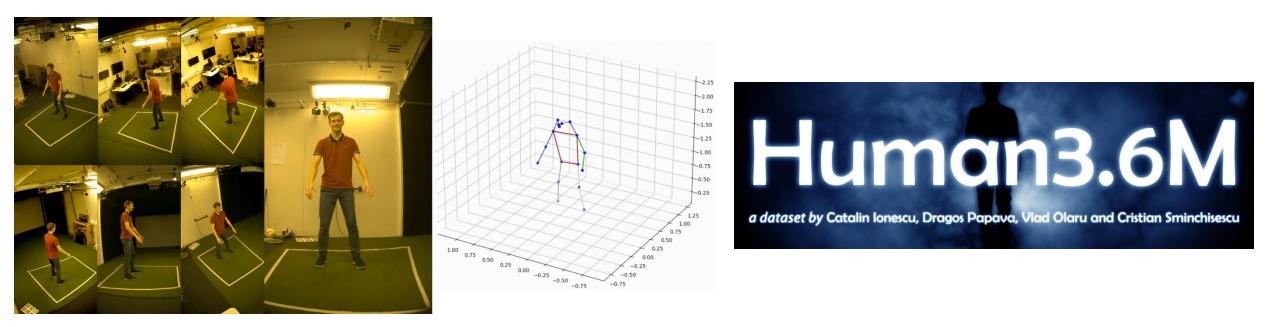
motionBERT: 2D → 3D Pose



MotionBERT: A Unified Perspective on Learning Human Motion Representations (ICCV 2023)

Datasets

- SportsPose: Dynamic sports movements, additional views included (fine-tuning)
- Human3.6M: Used for semi-supervised learning experiments (semi-supervised learning)



http://christianingwersen.github.io/SportsPose/ http://vision.imar.ro/human3.6m/description.php

Evaluations

Fine-tuning: SportsPose

	Soccer kick		Tennis serve		$\begin{array}{c} \text{Baseball} \\ \text{pitch} \end{array}$		Volley		Jumping		All		Right +		
	MPJPE	PA	MPJPE	PA	MPJPE	PA	MPJPE	PA	MPJPE	PA	MPJPE	PA	view x	MPJPE 1	PA-MPJPE
Baseline MotionBERT [46] Iqbal <i>et al.</i> [14] ⁴													View 1 View 2	_	
Fine-tuning with	1 3D	data	(2 vi	ews)									View 3	27.3	31.8
$egin{array}{llllllllllllllllllllllllllllllllllll$			27.3 25.4										View 4		26.7
Only 2D fine-tu	ning	(2 vi	ews)										View 5	31.9	35.6
$\mathcal{L}_{ m 2D}(7) \ \mathcal{L}_{ m 2D_{con}}(8), { m Ours}$	59.0	44.1	59.1	42.0 22.2		45.1 25.2					64.4 36.4		View 6	25.8	27.2

<Evaluation Table>

<Which views to use>

Evaluations

Semi-supervised: Human3.6M

- 3D data: supervised learning
- 2D data: Consistency Loss (No-labels)

Methods	MPJPE↓	PA-MPJPE ↓
Rodhin et al. (ECCV'18) [35]	131.7	98.2
Pavlakos et al. (ICCV'19) [32]	110.7	74.5
Li et al. (ICCV'19) [22]	88.8	66.5
Rodhin et al. $(CVPR'18)$ [36]	-	65.1
Kocabas et al. $(CVPR'19)$ [20]	-	60.2
Iqbal et al. $(CVPR'20)$ [14]	62.8	51.4
Roy et al. (3DV'22) [37]	60.8	48.4
Ours	58.9	43.6

Limitations & Contributions

Limitations

- Performance depends on camera placements
- Requires fixed camera positions
- Requires precise camera synchronization

Contributions

- Works without camera calibration.
- Significantly improves performance even without 3D ground truth data.

Q&A